twoD/utils
Basic functions used throughout the 2D module and/or that foster the use of this module
process_all_dlc_tracking_h5s_with_default_settings
process_all_dlc_tracking_h5s_with_default_settings (in_dir_path:pathlib. Path, out_dir_path:pa thlib.Path, week_id:int)
Type | Details | |
---|---|---|
in_dir_path | Path | path to the input directory which contains all DLC tracking data results |
out_dir_path | Path | path to the output directory where all processed results will be saved |
week_id | int | number of weeks post injection |
Returns | None |
get_max_odd_n_frames_for_time_interval
get_max_odd_n_frames_for_time_interval (fps:int, time_interval:0.5)
For the savgol_filter function of scipy - which will be used during preprocessing to smooth the data - you need an odd integer as the window_length parameter. This function helps to find the maximum odd number of frames that still fit within a specified time interval at a given fps.
Type | Details | |
---|---|---|
fps | int | frames per second of the recording |
time_interval | 0.5 | desired maximal time interval in seconds; default = 0.5 s |
Returns | int |
get_column_names
get_column_names (df:pandas.core.frame.DataFrame, column_identifiers:List[str], marker_ids:List[str]=['all'])
get_interval_border_idxs
get_interval_border_idxs (all_matching_idxs:numpy.ndarray, framerate:float, min_interval_duration:Optional[float]=None, max_interval_duration:Optional[float]=None)
compute_coverage
compute_coverage (df:pandas.core.frame.DataFrame, critical_marker_ids:List[str], likelihood_threshold:float=0.5)
get_idxs_where_all_markers_exceed_likelihood
get_idxs_where_all_markers_exceed_likelihood (df:pandas.core.frame.DataF rame, marker_ids:List[str], likelihood_threshold:float= 0.5)